Hypoparathyroidism:

Now that you have it, what do you do?

Anne Schafer, MD
Division of Endocrinology
UC San Francisco and the
San Francisco VA Medical Center
October 14, 2011
No conflicts of interest
Overview

- Parathyroid glands and PTH
- Causes of hypoparathyroidism
- Symptoms and potential complications
- Lab diagnosis and monitoring
- Treatment
 - Goals of treatment
 - Current and future treatment regimens
What are the parathyroid glands?
What does parathyroid hormone do?

Parathyroid hormone (PTH) orchestrates the body’s calcium homeostasis

- Maintains the calcium level in the blood within in narrow physiologic range
 - Normal total Ca ≈ 8.6-10.2 mg/dL
 - Critical for neuromuscular function
 • Muscle contraction
 • Nerve transmission
 • Bone mineralization
How does PTH control calcium?

If the blood calcium level decreases . . .

. . . then the parathyroids secrete more PTH . . .

PTH increases the calcium level through its effects on

- **Kidney**: \uparrow Ca reabsorption, \uparrow activated vit D
- **Intestine**: activated vit D \uparrows Ca absorption
- **Bone**: Ca mobilized from the skeleton
Normal calcium homeostasis
But what happens the body cannot produce enough PTH?

Blood calcium level low →

Inadequate PTH production →

- Too little activated vitamin D
- Not enough Ca absorbed in the gut
- Kidney can’t hold on to Ca
- Skeletal Ca not mobilized

→ Blood calcium level stays low
Hypoparathyroidism = Hypocalcemia (low blood calcium level) with low or “inappropriately normal” PTH
Overview

- Parathyroid glands and PTH
- Causes of hypoparathyroidism
- Symptoms and potential complications
- Lab diagnosis and monitoring
- Treatment
 - Goals of treatment
 - Current and future treatment regimens
Causes of hypoparathyroidism

- Accidental damage to or removal of parathyroid glands during surgery
- Genetic or developmental
 - Parathyroid glands not formed properly
 - Impaired parathyroid function
- Autoimmune
- Extensive radiation to the neck
- Infiltrative (e.g., copper, iron, infection)
- Low magnesium
Surgical hypoparathyroidism

- Accidental removal of or damage to the parathyroid glands or their blood supply
 - Highest risk operations: completion thyroidectomy, total thyroidectomy with neck dissection
 - Partial more common than complete

Timeframe:
- Transient: Surgery
- Chronic: 6 months post-op
- Permanent
Surgical hypoparathyroidism

- Transient hypoparathyroidism: Common
 - 7% to 46% of total thyroidectomies
 - Parathyroid gland “stunning”
 - Recovery in days to weeks (or longer)

- Permanent hypoparathyroidism
 - Lower incidence with experienced endocrine surgeons, high-volume centers
 - 0.9% to 1.6% of thyroid operations
 - Earlier reports: as high as 6.6%

Bilezikian et al., 2011; Shoback, 2008
Measures surgeons can take

- Discuss risks with you pre-operatively
- Monitor serum Ca level peri-operatively
 ▫ Low serum Ca or PTH level post-op (in hospital) warrants close attention
- Monitor for symptoms/signs of low Ca
- Treat post-operatively with calcium ± vitamin D when appropriate (hopefully temporarily)

Kim et al., 2011; Asari et al., 2008
Overview

- Parathyroid glands and PTH
- Causes of hypoparathyroidism
- Symptoms and potential complications
- Lab diagnosis and monitoring
- Treatment
 - Goals of treatment
 - Current and future treatment regimens
Symptoms

- Largely related to hypocalcemia
- Depend on timing (acute vs. chronic) and severity
 - Chronic hypocalcemia may have few if any symptoms despite low Ca levels
- Highly variable, individual
Symptoms: Acute

Neuromuscular irritability

- Tingling (paresthesias) of lips, fingers, toes
- Muscle cramping/twitching, especially hands (“claw”) and feet
 - Severe = tetany
- Airway spasms
- Seizures, altered consciousness, coma
- Heart arrhythmia
Chvostek’s sign

Images in Clinical Medicine
Chvostek’s Sign and Carpopedal Spasm
Ganesh Athappan, M.D., and Venkatesh Kumar Ariyamuthu, M.D.
Trousseau’s sign

Images in Clinical Medicine

Trouseau's Sign
Michael E. Meininger, M.D., and Jason S. Kendler, M.D.
Symptoms: Chronic

Tingling, cramping/twitching, but also:

- Generalized fatigue
- “Brain fog”
- Insomnia
- Depression ± anxiety
- Headaches
- Bone pain
- Dry skin, hair loss
Potential complications

• Cataracts
• Congestive heart failure
• Calcium deposits in the brain
 ▫ Basal ganglia, parkinsonism
• Other soft tissue calcification
• Kidney complications
 ▫ Kidney stones, chronic kidney disease
Overview

- Parathyroid glands and PTH
- Causes of hypoparathyroidism
- Symptoms and potential complications
- Lab diagnosis and monitoring
- Treatment
 - Goals of treatment
 - Current and future treatment regimens
Calcium levels: Total vs. ionized (free)

- Physiologically active calcium is the ionized (free) calcium (~50% of total)
- Most of bound Ca is bound to albumin
 - If your albumin level is low, your doctor will adjust your measured total calcium level upward
 - (A measured total Ca of 7.7 mg/dL with an albumin of 3.0 g/dL is ≈ a total Ca of 8.5 mg/dL)
- iCa may be checked in conditions expected to affect binding to albumin
Lab diagnosis

- Serum calcium
- Albumin
- Intact PTH
- 1,25-dihydroxyvitamin D (activated vit D)
- Phosphate
- Magnesium

- If serum calcium level is high and PTH is low, diagnosis may be unclear
Monitoring

- Serum calcium
- Albumin
- Phosphate
- Urinary calcium (24-hour)
- 25-hydroxyvitamin D
- Serum PTH may be rechecked if hypoparathyroidism is hoped to be transient
Overview

- Parathyroid glands and PTH
- Causes of hypoparathyroidism
- Symptoms and potential complications
- Lab diagnosis and monitoring
- Treatment
 - Goals of treatment
 - Current and future treatment regimens
Goals of treatment: Acute crisis

Symptomatic hypocalcemia can be an emergency (e.g., tetany, airway spasm) → goals are to raise Ca level and resolve symptoms

- IV calcium infusion
- Magnesium repletion if necessary
Goals of treatment: Chronic

- Serum calcium in the low-normal range
 - Calcium
 - Vitamin D
- Avoid high urinary calcium (= hypercalciuria)
 - Prevent kidney complications
- Avoid high serum phosphate
 - Avoid high calcium-phosphate product (minimize calcium deposits)
Current treatment options

- Calcium
- Calcitriol (activated vitamin D)
- Ergocalciferol, cholecalciferol (D_2 & D_3)
- Thiazide diuretics
- Low phosphate diet
- Phosphate binders
Calcium

- Calcium carbonate or calcium citrate
 - Calcium citrate better absorbed in people with low stomach acid
 - Take calcium carbonate with meals
- Amount needed varies (1 - 9 grams/day)
 - Dosed 2-4 times daily
 - Recognize difference between mg carbonate/citrate and mg elemental Ca
- Potential side effects: constipation
Calcitriol

- Activated vitamin D = $1,25(\text{OH})_2\text{D}$
- Improves intestinal calcium absorption
 - Also increases phosphate absorption
- Doses vary (0.25 - 2.0 mcg/day)
- Short duration of action
Ergocalciferol, cholecalciferol

- Vitamin D$_2$ and D$_3$
- Require some PTH to be converted to active vitamin D (calcitriol)
- Longer lived (last weeks in the body)
- Doses vary (~800 IU - 50,000 IU/day)
 - Regimen may depend on vitamin D level in blood (25-hydroxyvitamin D level)
Goals of treatment: Chronic

- Serum calcium in the low-normal range
 - Calcium
 - Vitamin D
- Avoid high urinary calcium (= hypercalciuria)
 - Prevent kidney complications
- Avoid high serum phosphorus
 - Avoid high calcium-phosphorus product (minimize calcium deposits)
Thiazide diuretics

- Include hydrochlorothiazide (HCTZ), chlorthalidone
- Decrease urinary calcium excretion
- May help to limit amount of vit D needed to maintain normal serum calcium level

Side effects:
- Increased urination
- Low blood potassium level (may need supplement)
Measures to lower phosphorus

- **Low phosphorus diet**
 - Limit intake of beans, cola, organ meats
 - Balance need for calcium with avoidance of phosphate with respect to dairy

- **Phosphate binder medications**
 - Bind to phosphate in gut and limit its absorption
 - Calcium carbonate or citrate
 - Sevelamer, lanthanum
PTH replacement therapy

- Not FDA-approved for hypoparathyroidism, but under investigation
- PTH(1-84) = full-length molecule, or PTH(1-34) = first 34 amino acids (teriparatide)
 - Both currently in use as treatment for osteoporosis: PTH(1-34) FDA-approved and PTH(1-84) approved in Europe
PTH replacement therapy

- Potential to reduce calcium and calcitriol requirements
 - Potential to decrease risk of high urinary calcium (= hypercalciuria)
 - Potential to decrease risk of accidental high serum calcium (= hypercalcemia)
 - Potential to decrease risk of soft tissue calcium deposits
 - Potential for more physiologic bone metabolism
PTH replacement therapy

- Subcutaneous injection

- Clinical trial protocols have considered injections every other day, to twice daily
Examples of PTH clinical trials

- PTH(1-34) twice daily vs. calcitriol in 27 adults: PTH(1-34) maintained serum Ca in the low-normal or mildly low range over 3 years

- PTH(1-84) every other day in 30 adults: Average calcium dose decreased from 3030 ± 2325 mg to 1661 ± 1267 mg; average calcitriol dose decreased, too

Winer et al., 2003; Rubin et al., 2010
Examples of PTH clinical trials

- PTH(1-84) once daily vs. placebo added to conventional therapy in 62 adults
 - 6 months
 - Those on PTH(1-84) reduced calcium and active vitamin D doses by 75% and 73%, respectively
 - Frequent hypercalcemia during titration

Sikjaer et al., 2011
Continued research needed

- What is the best PTH dosing regimen (i.e., twice daily, every other day)?
- Exactly how should calcium and calcitriol doses be decreased when therapy is started?
- What are the long-term effects of PTH replacement therapy?
Overview

- Parathyroid glands and PTH
- Causes of hypoparathyroidism
- Symptoms and potential complications
- Lab diagnosis and monitoring
- Treatment
 - Goals of treatment
 - Current and future treatment regimens
Thank you!

Hypoparathyroidism Association
www.hpth.org